
Power System Dynamic Modelling

and Simulation in Python

Julius Susanto and Alireza Fereidouni

Agenda

2

9:00 – 10:30 Types of models in power systems

Mathematical representation of dynamical systems

Exercise 1: Predator-prey equations

10:30 – 11:00 Morning Tea

11:00 – 12:30 Transfer functions and control block diagrams

Common primitive blocks and their step response

Exercise 2: Step responses of primitive blocks

12:30 – 13:30 Lunch

13:30 – 15:00 Types of control systems

Initialisation of dynamic models

Exercise 3: Initialisation of a hydro turbine governor

15:00 – 15:30 Afternoon Tea

15:30 – 17:30 Structure of an RMS simulation program

Exercise 4: Dynamic performance of a synchronous machine

Types of models in power systems

3

There are typically three broad approaches to modelling power systems, each intended to investigate specific power

system phenomenon:

1. Steady-state (or static) models

• In steady-state models, the power system is represented at an equilibrium operating point where there is power

balance between generation and loads.

• Network branch and shunt elements such as transformers, cables, shunt capacitor banks, etc. are modelled in terms of

elementary impedance (R, X) and admittance (G, B) values evaluated at nominal system frequency (or at multiples of

nominal frequency for harmonic studies).

• Generators and loads are typically modelled as fixed active and reactive power injections into the system.

• Voltage and power quantities are always represented as root-mean squared (RMS) phasors (i.e. a quantity is described

by a magnitude and phase angle or as a complex number such as P + jQ).

• Steady-state models are used for load flow, short circuit and harmonic analyses.

Types of models in power systems

4

2. RMS (or stability) models

• RMS models are used for dynamic time-domain simulations with RMS phasor quantities to investigate the dynamic

electro-mechanical response of a power system after it is subjected to a disturbance or perturbation (e.g. fault,

generator trip, motor start, etc.).

• Like in steady-state simulations, network branch and shunt elements in an RMS model are modelled as impedance and

admittance values evaluated at nominal system frequency (50 Hz).

• This assumption holds as long as the system frequency remains relatively close to 50 Hz throughout the simulation.

• Generators are modelled as power injections into the system, but with magnitudes that are governed by sets of

differential equations (e.g. swing equation and synchronous machine equations).

• Control elements such as AVRs, governors, automatic tap changers, STATCOMs, etc. are also modelled dynamically.

• RMS models are used for transient stability, motor starting, dynamic voltage stability and load rejection analyses.

Types of models in power systems

5

3. Electromagnetic Transient (EMT) models

• EMT models are used for dynamic time-domain simulations natural three-phase quantities (e.g. voltage is represented

as instantaneous three phase voltages Va, Vb and Vc).

• Unlike RMS models, no assumptions are made about frequency. As a result, network branch and shunt elements are

modelled as differential equations (e.g. the voltage and current across an inductor is modelled as 𝑉=𝐿 𝑑𝑖/𝑑𝑡).

• This allows for the investigation of phenomena such as lightning strikes, switching transients and resonance effects, all

of which occur at a broad range of frequencies.

• This is not possible using RMS studies because of the inherent modelling assumption of a near-nominal frequency, i.e.

RMS studies can only look at the dynamic behaviour of the system around 50 Hz.

• Depending on the time scale of the study, control elements such as AVRs, governors, etc. may or may not need to be

modelled (e.g. a switching or lightning transient is typically too fast for control elements to react and influence the

results).

Types of models in power systems

6

Model Type Quantities Modelling Requirements Application Examples

Steady-state RMS phasors Simple (impedances and power

injections)

Load flow, short circuit, harmonic analysis

RMS / Stability RMS phasors Moderately detailed (requires

dynamic controller models)

Transient stability, voltage stability, motor starting

Electromagnetic

Transients (EMT)

Natural

(instantaneous

values)

Very detailed Lightning and switching transient overvoltages,

ferroresonance, variable frequency drive ramp up

Summary of power system models

Source: Tielens P., Van Hertem D., “The relevance of inertia in power systems”, Renewable and Sustainable Energy Reviews, Volume 55, March 2016

RMSRMSEMT EMT

Steady-state
Steady-state

Dynamic RMS power system models: Steady-state representation

7

In the steady-state, a power system is typically modelled as follows (i.e. load flow):

• Generation elements: are characterised by active and reactive power injections

and/or voltage setpoints

• Transformers: are passive elements represented by series (and optionally shunt)

impedances (that is adjusted by the tap position)

• Transmission lines and cables: are passive elements represented by series (R +

jX) and shunt (G + jB) impedances

• Shunt reactive plant: such as capacitors and reactors are passive elements

represented by shunt impedances

• SVCs and FACTS devices: are characterised by reactive power injections and/or

voltage setpoints

• Loads: such as static loads and induction motors are characterised by active and

reactive power absorptions

SVC

M

V, P, Q

V, Q

P, Q P, Q

Tap Position

R, X

R, X

G, B

B

Dynamic RMS power system models: Dynamic representation

8

In dynamic simulations, the power flows and voltages in the power system change

with respect to time (if they weren’t, it would be considered steady-state)

Elements in the power system can be categorised as either passive or active

elements depending on whether or not they can be represented as impedances

(passive) or as dynamic current injections that can change over time or be controlled

(active)

SVC

M

Id, Iq

Tap Position

R, X

R, X

G, B

B

Id, Iq

Id, Iq

R, X

ISVC

Iload

Element Representation Controllable Dynamic RMS Model

Synchronous machine Active Yes Stator magnetic and electrical equations,

mechanical (swing) equation

Induction machine Active Yes

(if generator)

Stator and rotor equations,

mechanical load / prime mover equation

Converter-interfaced

generation

Active Yes Voltage source behind impedance,

controllable current injection

Transformer Passive Yes Series / shunt impedances

Lines and cables Passive No Series / shunt impedances

Shunt reactive plant Passive No Shunt impedance

SVC / FACTS Active Yes Either voltage source behind impedance

or equivalent shunt impedance

Load Passive or Active No Passive: shunt impedance

Active: current injection behind shunt

impedance

Dynamic RMS power system models: Controllable elements

9

Power system elements such as synchronous machines, wind turbines, solar PV plants, SVCs and power

transformers are “controllable” in the sense that their current injections in a dynamic simulation can be adjusted via

a control system.

Controllers are represented by their own dynamic models (more on this later).

AVR

Prime Mover

Model

Synchronous

Generator

Aerodynamic

Control Model

WT Electrical

Model

Wind

Model

Tap Changer

Controller

Controlled Bus Voltage

Mathematical representation of dynamical systems

10

In time-domain (RMS) simulations, the most convenient mathematical representation for power system dynamics is a set of

differential-algebraic equations (DAE):

𝑑𝑥1

𝑑𝑡
⋮

𝑑𝑥𝑛

𝑑𝑡

=
𝑓1(𝑥1, 𝑥2, ⋯ , 𝑥𝑛, 𝑦1, 𝑦2, ⋯ , 𝑦𝑛 , 𝑡)

⋮
𝑓𝑛(𝑥1, 𝑥2, ⋯ , 𝑥𝑛 , 𝑦1, 𝑦2, ⋯ , 𝑦𝑛 , 𝑡)

𝑑𝒙

𝑑𝑡
= 𝒇(𝒙, 𝒖, 𝑡)

𝒙 𝑡0 = 𝒙0 =
𝑥1 𝑡0

⋮
𝑥𝑛 𝑡0

𝟎 = 𝒈(𝒙, 𝒚, 𝑡)

𝒚 𝑡0 = 𝒚0 =
𝑦1 𝑡0

⋮
𝑦𝑛 𝑡0

0
⋮
0

=
𝑔1(𝑥1, 𝑥2, ⋯ , 𝑥𝑛, 𝑦1, 𝑦2, ⋯ , 𝑦𝑛 , 𝑡)

⋮
𝑔𝑛(𝑥1, 𝑥2, ⋯ , 𝑥𝑛 , 𝑦1, 𝑦2, ⋯ , 𝑦𝑛 , 𝑡)

Differential equations Algebraic equations

Initial values

𝒙 𝑡𝑛 =
𝑥1 𝑡𝑛

⋮
𝑥𝑛 𝑡𝑛

𝒚 𝑡𝑛 =
𝑦1 𝑡𝑛

⋮
𝑦𝑛 𝑡𝑛

State variables Algebraic variables

Mathematical representation of dynamic RMS power system models

11

The dynamic RMS power system model is most commonly formulated with a current injection model* as the algebraic

equations (representing the interaction between the network and the dynamic models):

𝟎 = 𝑌 𝒗 − 𝒊(𝒙, 𝒗)

𝑌 is the network nodal admittance matrix

𝒗 is a vector of nodal voltages (algebraic variables)

𝒊 is a vector of (net) nodal current injections

𝑑𝒙

𝑑𝑡
= 𝒇(𝒙, 𝒗)Differential equations:

Algebraic equations:

𝒙 is a vector of state variables

(*) Alternatively, a power injection model of the form 𝟎 = 𝑑𝑖𝑎𝑔 𝒗 𝑌 𝒗∗ − 𝑑𝑖𝑎𝑔 𝒗 𝒊∗ 𝒙, 𝒗 can also be used.

Except for very simple systems, a closed-form analytical solution for this DAE system is not possible and it must be solved

using numerical integration.

Numerical Integration: Explicit Methods

12

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑡)

𝑑𝑥𝑛

𝑑𝑡
= 𝑓(𝑥𝑛, 𝑡𝑛)

Let’s first discretise time such that 𝑡 = 𝑡0, 𝑡0 + ℎ, 𝑡0 + 2ℎ, … , 𝑡0 + 𝑛ℎ, where ℎ is the integration step size:

The derivative at any time step can be approximated by a simple tangent:

𝑑𝑥𝑛

𝑑𝑡
=

𝑥𝑛+1 − 𝑥𝑛

ℎ

We can re-arrange this approximate derivative to solve for 𝑥 at the next time step (*):

(*) Alternatively, we can derive this from the first two terms of a Taylor series expansion: 𝑥 𝑡𝑛 + ℎ = 𝑥 𝑡𝑛 + ℎ
𝑑𝑥

𝑑𝑡
+

ℎ2

2!

𝑑2𝑥

𝑑𝑡2 + ⋯ ≈ 𝑥𝑛 + ℎ 𝑓(𝑥𝑛, 𝑡𝑛)

𝑥𝑛+1 = 𝑥𝑛 + ℎ
𝑑𝑥𝑛

𝑑𝑡
= 𝑥𝑛 + ℎ 𝑓(𝑥𝑛, 𝑡𝑛)

This formulation is called the [Naïve] Euler Method and is the simplest of the explicit numerical integration methods

(named as such because we can explicitly formulate the solution to the next time step given an initial condition).

Consider the first-order differential equation:

𝑥𝑛 𝑥𝑛+1

ℎ

𝑥𝑛+1 − 𝑥𝑛

Numerical Integration: Stability and Accuracy of Explicit Methods

13

𝑑𝑥

𝑑𝑡
= −𝜆𝑥(𝑡)

𝑥 𝑡 = 𝑐𝑒−𝜆𝑡

Given the initial condition 𝑥 0 = 𝑐, the exact solution is:

Applying the naïve Euler method to solve this ODE:

Clearly, 𝑥𝑛+1 is only bounded if |1 − ℎ𝜆| ≤ 1, or the integration time step ℎ ≤
2

𝜆

= 𝑥𝑛 − ℎ𝜆 𝑥𝑛

Consider the first-order differential equation: where 𝜆 is a real number and 𝜆 ≥ 0

𝑥𝑛+1 = 𝑥𝑛 + ℎ 𝑓(𝑥𝑛, 𝑡𝑛)

= 𝑥𝑛(1 − ℎ𝜆)

= 𝑥𝑛−1(1 − ℎ𝜆)2

= 𝑥0(1 − ℎ𝜆)𝑛

Conclusion: with explicit integrators, the time step must be sufficiently small, otherwise errors will compound at

each time step and cause numerical instability.

However, there is a difference between numerical stability and solution accuracy.

Numerical Integration: Stability and Accuracy of Explicit Methods

14

Numerically unstable Numerically stable, but a wild solution

Numerically stable, but inaccurate Numerically stable and accurate

𝜆 = 2, 𝑦 0 = 10

ℎ ≤
2

𝜆
≤ 1

𝑥 𝑡 = 10𝑒−2𝑡

For numerical

stability:

Exact solution:

Parameters:

Numerical Integration: Implicit Methods

15

Suppose we changed the way of calculating the derivative by using the previous time

step (rather than the next time step):

𝑑𝑥𝑛

𝑑𝑡
=

𝑥𝑛 − 𝑥𝑛−1

ℎ

Given the first-order differential equation
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑡) , we can re-arrange this approximate derivative as follows:

𝑥𝑛 = 𝑥𝑛−1 + ℎ 𝑓(𝑥𝑛, 𝑡𝑛)

This formulation is called the Backward Euler Method and is referred to as an implicit method because 𝑥𝑛+1 appears

on both sides of the equation.

Implicit methods typically require an iterative algorithm to solve each time step and are thus have higher computational

burden, but they are attractive because of their inherent numerical stability.

𝑥𝑛−1 𝑥𝑛

ℎ

𝑥𝑛 − 𝑥𝑛−1

The next time step can be found by setting 𝑛 = 𝑛 + 1 :

𝑥𝑛+1 = 𝑥𝑛 + ℎ 𝑓(𝑥𝑛+1, 𝑡𝑛+1)

Numerical Integration: Stability and Accuracy of Implicit Methods

16

𝑑𝑥

𝑑𝑡
= −𝜆𝑥(𝑡)Again consider the first-order differential equation: where 𝜆 is a real number and 𝜆 ≥ 0

Applying the Backward Euler method to solve this ODE:

𝑥𝑛+1 = 𝑥𝑛 − ℎ𝜆𝑥𝑛+1

=
𝑥𝑛

1+ℎ𝜆

=
𝑥𝑛−1

1+ℎ𝜆 2

=
𝑥0

1+ℎ𝜆 𝑛+1

𝑥𝑛+1 is only bounded if 1 + ℎ𝜆 ≥ 1 and since 𝜆 ≥ 0, then 𝑥𝑛+1 is stable for any step size ℎ ≥ 0

Numerical Integration: Stability and Accuracy of Implicit Methods

17

Numerically stable, but inaccurate

Numerically stable, but inaccurate Numerically stable and accurate

𝜆 = 2, 𝑥 0 = 10

ℎ ≥ 0

𝑥 𝑡 = 10𝑒−2𝑡

For numerical

stability:

Exact solution:

Parameters:

Numerically stable, but inaccurate

Numerical Integration: Summary

18

Explicit Methods Implicit Methods

Numerical Stability Stable only at small enough step sizes Inherently stable (“A-stable”)

Solution Accuracy Accurate at small enough step sizes, i.e. relative to the largest negative eigenvalue in the

system or as a rule of thumb, less than half of the fastest time constant

Computational Burden Low – Medium High (unless problem can be re-arranged to

become explicitly formulated)

Algorithm Examples • Naïve Euler

• Heun (predictor-corrector)

• (Explicit) Runge-Kutta

• Backward Euler

• Trapezoidal

• Implicit Runge-Kutta

Summary of numerical integration approaches

Trapezoidal

algorithm in

PowerFactory

Physical vs Numerical Instability

19

In dynamic modelling, we need to be careful to make the distinction between physical or numerical instability.

For example, consider the rotor angle stability of a synchronous machine connected to an infinite bus (SMIB)

under fault conditions. When the short circuit is applied for longer than the critical fault clearing time (CFCT), the

machine loses synchronism with the system, i.e. it is physical unstable in that this would happen in real life.

Unstable

(fault clearing

time = 350 ms)

Stable

(fault clearing

time = 250 ms)

Physical vs Numerical Instability

20

Unstable

(step size =

10 ms)

Stable

(step size =

1 ms)

However, a different result can arise for the same set of conditions by modifying the integration step size.

Below is the same SMIB short circuit simulation with a 250 ms fault clearing time. From the previous slide, we

know that this would be physically stable, but by changing the integration step size of the Naïve Euler explicit

integrator, we can get a result that is numerically unstable.

Exercise 1: Predator-Prey (Lotka-Volterra) Equations

21

The Lotka-Volterra equations are a pair of differential equations that are often used to describe how natural

populations of predators (e.g. foxes) and prey (e.g. rabbits) rise and fall over time.

The basic logic is as follows:

1. The foxes eat the rabbits

2. When there are lots of rabbits, the fox population

increases

3. But as the fox population increases, they eat more of

the rabbits and the rabbit population decreases

4. After a while, the rabbit population becomes too small to

support the fox population and the foxes start dying off

5. As the fox population dwindles, there are less predators

for the rabbits and their population rises

6. The cycle starts all over again

Exercise 1: Predator-Prey (Lotka-Volterra) Equations

22

The Lotka-Volterra equations are as follows:

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − 𝛽𝑥𝑦

𝑑𝑦

𝑑𝑡
= 𝛿𝑥𝑦 − 𝛾𝑦

where 𝑥 is the population of rabbits, 𝑦 is the population of foxes, 𝛼 and 𝛽 are the growth and death rates of the

rabbits, and 𝛿 and 𝛾 are the growth and death rates of the foxes

Exercise

i. Solve the Lotka-Volterra equations with the naïve

Euler method

ii. What is a suitable integration step size for this

problem?

iii. Solve this problem again with the Backward Euler

method

𝑥0 = 10, 𝑦0 = 10, 𝛼 = 1.1, 𝛽 = 0.4, 𝛿 = 0.1, 𝛾 = 0.5

Transfer functions and control block diagrams

23

In linear time-invariant systems, the transfer function 𝐻 𝑠 defines the relationship between the input 𝑦𝑖 and output 𝑦𝑜 of

the system in the frequency domain:

𝐻(𝑠)𝑦𝑖 𝑦𝑜 = 𝐻(𝑠)𝑦𝑖

where 𝑠 =
𝑑

𝑑𝑡
 is the differential or Laplacian operator.

In principle, the transfer function can be any arbitrary function, but is usually broken down into more standard “primitive”

function blocks for practical purposes and readability:

1 + 𝑠𝑇1

1 + 𝑠𝑇2 1 + 𝑠𝑇3 1 + 𝑠𝑇4

1 + 𝑠𝑇1

1 + 𝑠𝑇2

1

1 + 𝑠𝑇3

1

1 + 𝑠𝑇4

Transfer functions and control block diagrams

24

Mathematically speaking, a control block diagram is a directed graph where the nodes / vertices are transfer function blocks

and edges / arcs are signal flows.

More plainly, a control block diagram is a graphical representation of how primitive blocks are connected together and how

they are related to (and combined with) the inputs and outputs of the system.

Control block diagram for a hydro turbine governor

The control block diagram representation can be used for

any arbitrary set of ODEs, but are typically used to describe

controllers such as excitation systems, prime mover /

governors, converter control systems, etc.

Common primitive blocks and their step responses

25

The step response is a dynamic system’s response to a unit step function input.

For example, consider the step response for a simple lag block:
1

1 + 𝑠
𝑦𝑖 𝑦𝑜

Unit step at t=1s

Common primitive blocks and their step responses

26

1

1 + 𝑠𝑇
𝑦𝑖 𝑦𝑜

1 + 𝑠𝑇1

1 + 𝑠𝑇2

𝑦𝑖 𝑦𝑜

1

𝑠𝑇
𝑦𝑖 𝑦𝑜

𝑠

1 + 𝑠𝑇
𝑦𝑖 𝑦𝑜

Lag block

Integrator block

Lead-lag block

Washout block

(lag-differentiator)

Low pass filter

High pass filter

Accumulator

Phase-lead

compensation

Time-domain equations for primitive blocks: Lag block

27

Consider the primitive lag block: 1

1 + 𝑠𝑇
𝑦𝑖 𝑦𝑜

Mathematically, this block can be broken down as follows:

𝑦𝑜 =
𝑦𝑖

1+𝑠𝑇

𝑦𝑜 1 + 𝑠𝑇 = 𝑦𝑖

𝑠𝑦𝑜 =
𝑦𝑖 − 𝑦𝑜

𝑇

𝑑𝑦𝑜

𝑑𝑡
=

𝑦𝑖 − 𝑦𝑜

𝑇
Recalling that 𝑠 =

𝑑

𝑑𝑡
 , then the lag block is simply the first-order differential equation:

For the sake of completeness, let us define 𝑥 as the state variable. The lag block can be described as:

𝑑𝑥

𝑑𝑡
=

𝑦𝑖 − 𝑥

𝑇
where 𝑦𝑖 is the input variable and 𝑦𝑜 = 𝑥 is the output variable

Time-domain equations for primitive blocks: Integrator block

28

Consider the primitive integrator block: 1

𝑠𝑇
𝑦𝑖 𝑦𝑜

Mathematically, this block can be broken down as follows:

𝑦𝑜 =
𝑦𝑖

𝑠𝑇

𝑠𝑦𝑜 =
𝑦𝑖

𝑇

Defining 𝑥 as the state variable, the integrator block can be described as:

𝑑𝑥

𝑑𝑡
=

𝑦𝑖

𝑇
where 𝑦𝑖 is the input variable and 𝑦𝑜 = 𝑥 is the output variable

Time-domain equations for primitive blocks: Lead-lag block

29

Consider the primitive lead-lag block:

Mathematically, this block can be broken down as follows:

𝑦𝑜 =
1 + 𝑠𝑇1

1 + 𝑠𝑇2
𝑦𝑖

Define 𝑥 such that:

𝑑𝑥

𝑑𝑡
=

𝑦𝑖 − 𝑥

𝑇2
where 𝑦𝑖 is the input variable and 𝑦𝑜 = 𝑥 +

𝑦𝑖−𝑥

𝑇2
𝑇1 is the output variable

1 + 𝑠𝑇1

1 + 𝑠𝑇2

𝑦𝑖 𝑦𝑜

=
𝑦𝑖

1+𝑠𝑇2
+

𝑠𝑦𝑖𝑇1

1+𝑠𝑇2

𝑥 =
𝑦𝑖

1 + 𝑠𝑇2
then it follows that: 𝑠𝑥 =

𝑦𝑖 − 𝑥

𝑇2
or

and 𝑦𝑜 = 𝑥 + 𝑠𝑥𝑇1

Therefore, with 𝑥 as the state variable, the lead-lag block can be described as:

𝑑𝑥

𝑑𝑡
=

𝑦𝑖 − 𝑥

𝑇2

Windup and non-windup limiters

30

The distinction between windup and non-windup (or anti-windup) limiters is important for limiters associated with

integrator, lag and lead-lag blocks. This is because the state variables can accumulate (windup).

1

𝑠𝑇
𝑦𝑖 𝑦𝑜

min

maxConsider the integrator with a windup limiter (with state variable 𝑥):

𝑑𝑥

𝑑𝑡
=

𝑦𝑖

𝑇
𝑦𝑜 = ቐ

𝑚𝑖𝑛 , 𝑥 < 𝑚𝑖𝑛
𝑥 , 𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑚𝑎𝑥

𝑚𝑎𝑥 , 𝑥 > 𝑚𝑎𝑥

𝑇=1

𝑚𝑖𝑛 = −2

𝑚𝑎𝑥 = 2

Parameters:

Windup

Output stays on limit

until the state variable

comes off limit

Windup and non-windup limiters

31

This windup behaviour may not be desirable, particularly if there is a large accumulation of windup (meaning that

the output stays on limit for longer).

1

𝑠𝑇
𝑦𝑖 𝑦𝑜

max

min

A non-windup (or anti-windup) limiter can be used that prevents this windup behaviour from occurring by

essentially limiting the state variable as well as the output:

𝑑𝑥

𝑑𝑡
=

0 , 𝑥 < 𝑚𝑖𝑛
𝑦𝑖

𝑇
, 𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑚𝑎𝑥

0 , 𝑥 > 𝑚𝑎𝑥

𝑦𝑜 = ቐ
𝑚𝑖𝑛 , 𝑥 < 𝑚𝑖𝑛

𝑥 , 𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑚𝑎𝑥
𝑚𝑎𝑥 , 𝑥 > 𝑚𝑎𝑥

𝑇=1

𝑚𝑖𝑛 = −2

𝑚𝑎𝑥 = 2

Parameters:
State variable and

output are identical

Dead Bands

32

A dead band (sometimes called a neutral zone or dead zone) is a band of input values in the domain of a transfer

function in a control system or signal processing system where the output is zero (the output is 'dead' - no action occurs).

Example: The dead band of a generating unit for their droop control in South-West Interconnected System (SWIS) is 50

(mHz). This means that no droop actions occur when the system frequency is within this range.

𝑦𝑖

start

end

𝑦𝑜 = ቐ

𝑦𝑖 , 𝑦𝑖 < 𝑠𝑡𝑎𝑟𝑡
0 , 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑦𝑖 ≤ 𝑒𝑛𝑑
𝑦𝑖 , 𝑥 > 𝑚𝑎𝑥

start

𝑦𝑖

start

end

𝑦𝑜 = ቐ

𝑦𝑖 − 𝑠𝑡𝑎𝑟𝑡 , 𝑦𝑖 < 𝑠𝑡𝑎𝑟𝑡
0 , 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑦𝑖 ≤ 𝑒𝑛𝑑

𝑦𝑖 − 𝑒𝑛𝑑 , 𝑥 > 𝑚𝑎𝑥

Type 1: No offset Type 2: Offset

https://en.wikipedia.org/wiki/Domain_of_a_function
https://en.wikipedia.org/wiki/Transfer_function
https://en.wikipedia.org/wiki/Transfer_function
https://en.wikipedia.org/wiki/Control_system

HV and LV Gates

33

HV Gate: Higher input is passed (Example: UEL). LV Gate: Lower input is passed (Example: OEL).

y1 𝑦𝑜 = ቊ
𝑦1 , 𝑦1 ≥ 𝑦2
𝑦2 , 𝑒𝑙𝑠𝑒y2

HV GATE
y1 𝑦𝑜 = ቊ

𝑦1 , 𝑦1 ≤ 𝑦2
𝑦2 , 𝑒𝑙𝑠𝑒y2

LV GATE

Lags vs time delays

34

In practical dynamic systems, there is often a time delay (or dead time) between a change in input and the

corresponding change in output, e.g. signal communication / propagation time.

This time delay is distinct from a lag block in that a delay is actually a discontinuity in the time domain:

In the frequency domain, the transfer function for a time delay is an exponential function:

𝑒−𝑠𝑇𝑦𝑖 𝑦𝑜

Lags vs time delays

35

From a simulation perspective, time delays are easy to model as 𝑒−𝑠𝑇𝐹(𝑠) is simply a time shift in the time domain

f t − 𝑇 , so all that is required is to skip time steps equivalent to 𝑇 (provided the integration time step h < 𝑇)

However, there are applications such as root-locus or Nyquist plot analyses where the poles and zeros of the

transfer function are required, i.e. it needs to be represented as a rational function:

A common technique for overcoming this problem is to approximate 𝑒−𝑠𝑇 as a continuous-time function that is

rational in the frequency domain. This can be done with Padé approximations, which is a method for finding

rational function approximations of any function:

𝑃(𝑠)

𝑄(𝑠)
𝑦𝑖 𝑦𝑜

And the time delay transfer function 𝑒−𝑠𝑇 has no poles or zeros (since it is discontinuous in the time domain).

𝑅 𝑠 =
𝑎0 + 𝑎1𝑠 + 𝑎2𝑠2 + ⋯ + 𝑎2𝑠𝑚

1 + 𝑏1𝑠 + 𝑏2𝑠2 + ⋯ + 𝑏2𝑠𝑛

where 𝑅 𝑠 is the Padé approximant of order 𝑚, 𝑛 with 𝑎𝑖 and 𝑏𝑖 the coefficients computed with an estimation

algorithm.

Exercise 2: Step responses of primitive blocks

36

This exercise is intended to develop intuition on the structure of primitive control blocks and their step responses

(e.g. shape and behaviour).

Exercise

i. Adjust the primitive block time constants to answer the following:

a) For a lag block, what time constant 𝑇 is required to get a response of 90%

within 2s?

b) For an integrator block, what time constant 𝑇 is required to reach a value of

20 within 5s?

c) For a lead-lag block, what time constants 𝑇𝑎 and 𝑇𝑏 are required to achieve

a phase-lead and phase-lag response?

ii. Implement the primitive washout block:

a) Determine the time-domain equations for a washout block (hint: follow the

same logic as the lead-lag formulation)

b) Generate a step response with 𝑇 = 0.8
c) Modify the standard washout block with a gain, determine values of K and T

for unity gain and different cut-off frequencies

𝑠

1 + 𝑠𝑇
𝑦𝑖 𝑦𝑜

Types of control systems

37

System

Disturbance

Input Output

System

Disturbance

Input Output

Feedback

+

System

Disturbance

Input Output

Feedforward

+

1. Open loop control

• Input is directly converted to an output

• Does not take into account natural / random disturbances

• Can be prone to error if disturbances are large

• Useful for simple systems where the output is predictable,

e.g. time-based sprinkler system

2. Feedback control

• Input is combined with the output (transformed or

otherwise)

• Effects of disturbances are manifested in the output signal

so the control system only needs to react and does not

need to have any a priori knowledge about the nature of

the disturbance

• Most common for moderately simple systems

3. Feedforward control

• Input is combined with the disturbance (or a proxy

measurement) and the control system

compensates for the effects of the disturbance

• Need to know something about the nature of the

disturbance and how it affects the system

• Used in complex systems or those with higher-

order dynamics, e.g. model-predictive control

Feedback control systems: PI(D) control

38

Feedback control systems are the most common type of control found in power systems, and of these systems,

the two most common control structures are as follows:

𝐾𝑖

𝑠

𝑦𝑟𝑒𝑓1. PI(D) Control

• Proportional-Integral-(Derivative) control regulates

an output to a reference signal

• Generally works well for linear systems, but can fail

in non-linear systems, e.g. if there are significant

saturation effects

• Derivative term is often neglected, particularly for

signals with a lot of high frequency noise (as the

derivative term will amplify the noise)

𝐾𝑑𝑠

1 + 𝑠𝑇𝑓

𝑦𝑖 𝑦𝑜

𝐾𝑝

++
+

-
+

+

+

Term Control Impact of Increasing Value

Proportional Increases speed of response, but also increases

overshoot

Integral Eliminates steady-state error, but causes oscillations

(increased settling time)

Derivative Decreases overshoot and settling time

Feedback control systems: PI(D) control

39

Example: Type DC4C dc commutator exciter

Source: IEEE Std 421.5-2016, IEEE Recommended Practice for Excitation System Models for Power System Stability Analysis

PID Regulator

Feedback control systems: Lead-Lag control

40

2. Lag or Lead-Lag Control

• Uses combinations of lag and/or lead-lag blocks to regulate an output

to an input (reference) value

• Time constants of lead-lag block can be selected to provide phase

lead or lag compensation

• Steady-state input into the controller is equal to the output (unlike

PI(D) controllers where steady-state input is zero)

Steam turbine

dynamics

Lag regulator

Source: IEEE PES-TR1, Dynamic Models for Turbine-Governors in Power System Studies, Technical Report, 2013

Example: Type TGOV1 steam turbine model

1

1 + 𝑠𝑇
𝑦𝑖 𝑦𝑜

min

max

1 + 𝑠𝑇𝑎

1 + 𝑠𝑇𝑏

𝑦𝑖 𝑦𝑜

min

max

Initialisation of dynamic models

41

Initialising a dynamic model means setting the state variables such that the model begins in the steady-state or

“flat starts”, i.e. the model outputs do not move around without a disturbance being applied

Mathematically, this means that all derivatives are zero, i.e.
𝑑𝑥

𝑑𝑡
= 0 or 𝑠 = 0

𝑑𝑥

𝑑𝑡
=

𝑦𝑖 − 𝑥

𝑇

For example, consider the primitive lag block:
1

1 + 𝑠𝑇
𝑦𝑖 𝑦𝑜

We know that the time-domain equations can be written as:

𝑦𝑜 = 𝑥and

Setting
𝑑𝑥

𝑑𝑡
= 0, we can initialize the model as follows:

0 =
𝑦𝑖 − 𝑥

𝑇

𝑥 = 𝑦𝑖 = 𝑦𝑜

Initialisation of dynamic models

42

It is good practice to check that your model flat starts by running

the simulation without any disturbances / events and verifying that

the outputs show no changes over time, i.e. are flat curves.

A flat start indicates that the state variables have been correctly

initialised.

Consider a flat and non-flat start of the hydro turbine governor

model introduced earlier:

Flat Start Non-Flat Start

Initialisation of primitive blocks

43

1

1 + 𝑠𝑇
𝑦𝑖 𝑦𝑜

1 + 𝑠𝑇1

1 + 𝑠𝑇2

𝑦𝑖 𝑦𝑜

1

𝑠𝑇
𝑦𝑖 𝑦𝑜

𝑠

1 + 𝑠𝑇
𝑦𝑖 𝑦𝑜

Lag block

Integrator block

Lead-lag block

Washout block

(lag-differentiator)

𝑦𝑖 = 0 𝑦𝑜 = 𝑦𝑜,𝑠𝑠

𝑥 = 𝑦𝑜

𝑦𝑖 = 𝑦𝑖,𝑠𝑠 𝑦𝑜 = 0

𝑥 = 𝑦𝑖

𝑥 = 𝑦𝑖

𝑦𝑖 = 𝑦𝑜 = 𝑦𝑜,𝑠𝑠

𝑥 = 𝑦𝑖

𝑑𝑥

𝑑𝑡
=

𝑦𝑖 − 𝑥

𝑇

𝑑𝑥

𝑑𝑡
=

𝑦𝑖 − 𝑥

𝑇

𝑑𝑥

𝑑𝑡
=

𝑦𝑖

𝑇

𝑑𝑥

𝑑𝑡
=

𝑦𝑖 − 𝑥

𝑇2
𝑦𝑖 = 𝑦𝑜 = 𝑦𝑜,𝑠𝑠

Input / output

initialisation

State variable

initialisation (*)

(*) Based on the specific formulation of the differential equations.

Exercise 3: Initialisation of a hydro turbine governor

44

Exercise

i. For the control block diagram of a hydro turbine

governor on the right:

a) Calculate on paper the initial values for the state

variables in the model

b) Test the initial values with the model in Python

and check that it flat starts

Control block diagram for a hydro turbine governor

Parameter Symbol Value
Pilot valve gain K1 1

Pilot valve time constant Tp 0.6

Rate limiter minimum rmin 0

Rate limiter maximum rmax 1

Distributor valve gain K2 1

Position limiter minimum pmin 0

Position limiter maximum pmax 1

Permanent droop compensation 𝜎 0.04

Transient droop gain 𝛿 1

Transient droop time constant Tr 0.5

Initial Value Symbol Value
Input 𝑑𝜔 = 𝜔𝑟𝑒𝑓 − 𝜔 0.02

Output 𝑍 0.5

Structure of an RMS simulation program

45

As described earlier, an RMS simulation model has the following set of differential-algebraic equations:

𝟎 = 𝑌 𝒗 − 𝒊(𝒙, 𝒗)

𝑌 is the network nodal admittance matrix

𝒗 is a vector of nodal voltages (algebraic variables)

𝒊 is a vector of (net) nodal current injections

𝑑𝒙

𝑑𝑡
= 𝒇(𝒙, 𝒗)Differential equations:

Algebraic equations:

𝒙 is a vector of state variables

The differential equations represent all of the modelled system (RMS) dynamics, e.g. synchronous machines and their

controllers (AVRs, governors, PSS, etc), converter-based generation, SVC/FACTS devices, transformer tap control, etc.

The algebraic equations represent the static (passive) elements of the network, e.g. line and cable impedances, fixed

shunt and series reactive plant and loads. For a network with 𝑛 nodes:

0
⋮
0

=
𝑌11 ⋯ 𝑌1𝑛

⋮ ⋱ ⋮
𝑌𝑛1 ⋯ 𝑌𝑛𝑛

𝑣1

⋮
𝑣𝑛

−
𝑖1

⋮
𝑖𝑛

The Ybus matrix defines the network structure / topology where

diagonal elements are shunt admittances at each node and off-

diagonal elements are series admittances between nodes

Bus voltages

at each node

Net current

injection at

each node

Structure of an RMS simulation program: Solving the model

46

A stylised program flow for a partitioned solution approach is shown in the

flow chart on the right. In this approach, the differential equations and algebraic

network equations are solved separately (i.e. partitioned) and are interfaced

within a single time step.

An alternative approach is to solve the differential and algebraic equations

simultaneously in each time step, but this is a more complicated approach from

a programming perspective (e.g. treatment of non-linear functions).

In RMS simulations, the dynamic models are initialised using steady-state

network variables (e.g. voltage, power, etc) from a power flow simulation.

The network equations 𝟎 = 𝑌 𝒗 − 𝒊(𝒙, 𝒗) are solved by calculating

current injections 𝒊(𝒙, 𝒗) using the latest state variables and directly

solving for the bus voltages:

𝒗 = 𝑌 −1𝒊(𝒙, 𝒗)

Initialise models

Run power flow

Set t = 0s

Solve differential

equations

Interfacing with

network variables

Solve network

equations

Event?

t ≤ tmax?

Handle event

t = t + h

Finish

At each time step, the state variables are updated by solving the differential

equations. The dynamic models of active elements are then interfaced to the

network as current injections (more on this later)

Since the current injections of dynamic models also depend on bus

voltages, the network interfacing and network solution steps are done

iteratively until the differences between the last two iterations is small.

Events (e.g. faults, contingencies, etc) are handled and may require

changes to the Ybus matrix, e.g. after network reconfiguration.

Structure of an RMS simulation program: Network interfacing

47

Network interfacing refers to the interfacing of dynamic active elements (e.g. generators, SVC/FACTS devices, induction

machines, etc) to the network as current injections. This typically involves two steps:

1. Reference frame transformation

• Voltages and currents of active elements such as synchronous machines and converters

are typically expressed in 𝑑𝑞 coordinates with an individual (local) reference frame.

• However, it is convenient to express network quantities in a common synchronously

rotating reference frame (e.g. real-imaginary phasor coordinates)

• Therefore, a reference frame transformation is necessary to interface active elements to

the network

𝑉𝑟

𝑉𝑖
=

cos 𝛿 − sin 𝛿
sin 𝛿 cos 𝛿

𝑉𝑞

𝑉𝑑

𝑉𝑞

𝑉𝑑
=

cos 𝛿 sin 𝛿
−sin 𝛿 cos 𝛿

𝑉𝑟

𝑉𝑖

2. Current injection via Norton equivalent circuit

• Active elements are typically interfaced to the network via a source impedance

that is incorporated directly into the Ybus matrix as a source admittance 𝒀𝑠

• This is depicted as a Norton equivalent circuit where 𝑽𝑡 is the bus voltage, 𝑰𝑡 is

the current injection from the active element (based on its state variables) and 𝑰′′
is the total current injection considering the source admittance (“pseudo-current”):

𝑰′′ = 𝑰𝑡 + 𝒀𝑠𝑽𝑡

Structure of an RMS simulation program: Treatment of loads

48

The Ybus matrix is inherently near-singular (i.e. non-invertible) and is actually singular when there are no shunt elements

connected to the network (e.g. shunt reactive plant, lines with shunt branches, etc).

As a result, solving the network equations directly by 𝒗 = 𝑌 −1𝒊(𝒙, 𝒗) would not possible and it is desirable to make the
Ybus matrix less ill-conditioned and more numerically stable by adding shunt elements to the main diagonal.

This can be done by interfacing active elements via a source admittance (as described previously), but another common
approach is to also incorporate PQ loads directly into the Ybus matrix as constant impedance (Z) shunt elements.

This is normally done after the power flow initialisation by the following calculation for a load connected to bus 𝑖:

𝒀𝑙𝑜𝑎𝑑 =
𝑃𝑖 − 𝑗𝑄𝑖

𝒗𝑖
2

Key implications: this is a standard approach in virtually all RMS simulation programs (e.g. PowerFactory, PSSE, ETAP,

etc) and it is important to note that loads defined as PQ in the power flow are no longer treated as constant power, but

constant impedance in the RMS simulation.

What this means practically is that in an RMS simulation, loads will tend to decrease when voltages fall (and vice versa),
i.e. voltage dependencies need to be built in specifically for loads.

49

RMS simulation options in PowerFactory

Integrator step size h Parameters for interfacing with network

variables and solving network equations

50

RMS simulation options in PowerFactory

Parameters to set algorithm

behaviour after an event

Exercise 4 – Dynamic Performance of Synchronous Generator

51

This exercise aims to simulate the dynamic behavior of a Steam Turbine Synchronous Generator using Park’s equations* for

the events specified below:

• Analysis 1:

Step Change in Mechanical Torque

• Analysis 2:

3-Phase Fault at the Terminals – Full Order

• Analysis 3:

3-Phase Fault at the Terminals – Reduced Order

PHASE-A STATOR WINDING

PHASE-B STATOR WINDINGPHASE-C STATOR WINDING

D-AXIS DAMPER WINDING

D-AXIS FIELD WINDING

Q-AXIS DAMPER WINDING 2

Q-AXIS DAMPER WINDING 1

Notes:

1. To solve the differential equations, the Euler Explicit Method

is used.

2. The machine is connected to an infinite bus whose frequency

and voltage are constant during the simulation.

3. The equations used in this section are written in the Rotor

Reference Frame known as Park’s equations.

4. In Analysis 3, the transients of the stator windings are

neglected.

*R. H. Park, “Two-Reaction Theory of Synchronous Machines-Generalized Method of Analysis, Part I, AIEE Transactions”, Vol. 48, July 1929, pp. 716-727.

Exercise 4 – Dynamic Performance of Synchronous Generator

52

Machine Nameplate:

Exercise 4 – Dynamic Performance of Synchronous Generator

53

The differential equations to be numerically solved by the Euler Explicit Method are given below*:

q-axis - Stator Winding Equation

d-axis - Stator Winding Equation

0-sequence - Stator Winding Equation

q-axis - Rotor 1st Damper Winding Equation

q-axis - Rotor 2nd Damper Winding Equation

P. C. Krause, O. Wasynczuk, S. D. Sudhoff, “Analysis of Electric Machinery and Drive systems”, IEEE Press, 2002.

Exercise 4 – Dynamic Performance of Synchronous Generator

54

The differential equations to be numerically solved by the Euler Explicit Method are given below:

d-axis - Rotor Field/Excitation Winding Equation

d-axis - Rotor Damper Winding Equation

Torque Angle Equation

Swing Equation

Exercise 4 – Dynamic Performance of Synchronous Generator

55

Initialisation or Steady-State Quantities:

Stator Current

Stator Current – Phasor Representation

Internal Voltage

Torque Angle

d-axis Stator Current

Electrical Torqueq-axis Stator Current

Excitation Voltage

Exercise 4 – Dynamic Performance of Synchronous Generator

56

Initialisation or Steady-State Quantities:

q-axis Stator Winding Flux

d-axis Stator Winding Flux

q-axis 1st Rotor Damper Winding Flux

q-axis 2nd Rotor Damper Winding Flux

d-axis Rotor Field Winding Flux

d-axis Rotor Damper Winding Flux

Exercise 4 – Dynamic Performance of Synchronous Generator

57

Base Quantities: Per Unit System:

Powers

Voltages

Currents

Impedances

Speeds

Torques

Fluxes

Exercise 4 – Dynamic Performance of Synchronous Generator

58

Fluxes and Currents:

q-axis Stator Current

q-axis 1st Damper Current

q-axis 2nd Damper Current

d-axis Stator Current

d-axis Excitation Current

d-axis Damper Current

Exercise 4 – Dynamic Performance of Synchronous Generator

59

Python Coding - hints:

1. Create dictionaries for the actual, base and per unit parameters. Please see the examples given below:

actual_dict = {}

actual_dict = {“S”: 835}

base_dict = {}

base_dict = {“Sb”: 835}

pu_dict = {}

pu_dict = {“S”: 1}

2. Initialisations – use per unit values:

Te = pu_dict[“Te”]

3. Before solving the differential equations, create a dictionary for results – parameters of interest:

results_dict = {}

results_dict = {“wr”: []}

4. Use a “while” loop for simulation for t_sim [s]:

t = 0

h = STEP SIZE

while t < t_sim:

 dfdt = refer to differential equations

 f = f + h x df # Euler Explicit method

 results[“f”].append(f) # saving the results

 t = t + h

Exercise 4 – Dynamic Performance of Synchronous Generator

60

Results – Analysis 1 = Step Change in Mechanical Torque
• Simulation Time = 15 [s]

• Step Size = 0.00001 [s]

• Event Time = 1 [s]

• Input Step Change =

Steady-State

Exercise 4 – Dynamic Performance of Synchronous Generator

61

Results – Analysis 1 = Step Change in Mechanical Torque

Exercise 4 – Dynamic Performance of Synchronous Generator

62

Results – Analysis 2 = 3-Phase Short-Circuit Fault at the Terminals – Full Order
• Simulation Time = 3 [s]

• Step Size = 0.00001 [s]

• Event Time = 0.5 [s]

• Faulted Terminal Voltage = 0 [pu]

• Fault Duration = 350 [ms]

During Fault

Exercise 4 – Dynamic Performance of Synchronous Generator

63

Results – Analysis 2 = 3-Phase Short-Circuit Fault at the Terminals – Full Order

Exercise 4 – Dynamic Performance of Synchronous Generator

64

Results – Analysis 3 = 3-Phase Short-Circuit Fault at the Terminals – Reduced Order
• Simulation Time = 3 [s]

• Step Size = 0.00001 [s]

• Event Time = 0.5 [s]

• Faulted Terminal Voltage = 0 [pu]

• Fault Duration = 250 [ms]

Stator TransientsDuring Fault

Exercise 4 – Dynamic Performance of Synchronous Generator

65

Results – Analysis 3 = 3-Phase Short-Circuit Fault at the Terminals – Reduced Order

	Slide 1
	Slide 2: Agenda
	Slide 3: Types of models in power systems
	Slide 4: Types of models in power systems
	Slide 5: Types of models in power systems
	Slide 6: Types of models in power systems
	Slide 7: Dynamic RMS power system models: Steady-state representation
	Slide 8: Dynamic RMS power system models: Dynamic representation
	Slide 9: Dynamic RMS power system models: Controllable elements
	Slide 10: Mathematical representation of dynamical systems
	Slide 11: Mathematical representation of dynamic RMS power system models
	Slide 12: Numerical Integration: Explicit Methods
	Slide 13: Numerical Integration: Stability and Accuracy of Explicit Methods
	Slide 14: Numerical Integration: Stability and Accuracy of Explicit Methods
	Slide 15: Numerical Integration: Implicit Methods
	Slide 16: Numerical Integration: Stability and Accuracy of Implicit Methods
	Slide 17: Numerical Integration: Stability and Accuracy of Implicit Methods
	Slide 18: Numerical Integration: Summary
	Slide 19: Physical vs Numerical Instability
	Slide 20: Physical vs Numerical Instability
	Slide 21: Exercise 1: Predator-Prey (Lotka-Volterra) Equations
	Slide 22: Exercise 1: Predator-Prey (Lotka-Volterra) Equations
	Slide 23: Transfer functions and control block diagrams
	Slide 24: Transfer functions and control block diagrams
	Slide 25: Common primitive blocks and their step responses
	Slide 26: Common primitive blocks and their step responses
	Slide 27: Time-domain equations for primitive blocks: Lag block
	Slide 28: Time-domain equations for primitive blocks: Integrator block
	Slide 29: Time-domain equations for primitive blocks: Lead-lag block
	Slide 30: Windup and non-windup limiters
	Slide 31: Windup and non-windup limiters
	Slide 32: Dead Bands
	Slide 33: HV and LV Gates
	Slide 34: Lags vs time delays
	Slide 35: Lags vs time delays
	Slide 36: Exercise 2: Step responses of primitive blocks
	Slide 37: Types of control systems
	Slide 38: Feedback control systems: PI(D) control
	Slide 39: Feedback control systems: PI(D) control
	Slide 40: Feedback control systems: Lead-Lag control
	Slide 41: Initialisation of dynamic models
	Slide 42: Initialisation of dynamic models
	Slide 43: Initialisation of primitive blocks
	Slide 44: Exercise 3: Initialisation of a hydro turbine governor
	Slide 45: Structure of an RMS simulation program
	Slide 46: Structure of an RMS simulation program: Solving the model
	Slide 47: Structure of an RMS simulation program: Network interfacing
	Slide 48: Structure of an RMS simulation program: Treatment of loads
	Slide 49: RMS simulation options in PowerFactory
	Slide 50: RMS simulation options in PowerFactory
	Slide 51: Exercise 4 – Dynamic Performance of Synchronous Generator
	Slide 52: Exercise 4 – Dynamic Performance of Synchronous Generator
	Slide 53: Exercise 4 – Dynamic Performance of Synchronous Generator
	Slide 54: Exercise 4 – Dynamic Performance of Synchronous Generator
	Slide 55: Exercise 4 – Dynamic Performance of Synchronous Generator
	Slide 56: Exercise 4 – Dynamic Performance of Synchronous Generator
	Slide 57: Exercise 4 – Dynamic Performance of Synchronous Generator
	Slide 58: Exercise 4 – Dynamic Performance of Synchronous Generator
	Slide 59: Exercise 4 – Dynamic Performance of Synchronous Generator
	Slide 60: Exercise 4 – Dynamic Performance of Synchronous Generator
	Slide 61: Exercise 4 – Dynamic Performance of Synchronous Generator
	Slide 62: Exercise 4 – Dynamic Performance of Synchronous Generator
	Slide 63: Exercise 4 – Dynamic Performance of Synchronous Generator
	Slide 64: Exercise 4 – Dynamic Performance of Synchronous Generator
	Slide 65: Exercise 4 – Dynamic Performance of Synchronous Generator

