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Abstract—This paper presents a novel closed-form solution for
a low-order system frequency response (SFR) model that is ac-
curate for all time periods and an accompanying approximation
for representing primary frequency responses at two different
speeds while still maintaining mathematical tractability. This
allows for the inclusion of both fast frequency responses (e.g. from
battery energy storage systems) and more conventional responses
(e.g. from thermal generation) in a single SFR formulation. The
closed-form expressions can be efficiently used in applications
that use the SFR model such as frequency stability studies and
security-constrained unit commitment (SCUC) studies.

Index Terms—Frequency stability, system frequency response,
fast frequency response

I. INTRODUCTION

Low-order system frequency response (SFR) models are
single-machine equivalent models of a power system that can
be used to predict the system frequency trajectory in response
to a disturbance [1]. The differential equations that underpin
the model are typically solved via numerical integration,
but sometimes it is desirable to have closed-form solutions,
particularly in optimisation applications, e.g. for security-
constrained unit commitment and market models [2].

A closed-form solution for a generalised multi-machine SFR
model was proposed in [3], based on the assumption that
the dominant generation sources in the system were reheat-
type steam boilers. The solution used lead-lag representations
of the primary frequency response (PFR) providers and was
developed by taking a partial fractions expansion of the
combined transfer function, but the frequency nadir cannot be
solved analytically. The formulation was simplified in [2] by
assuming that all turbine reheat time constants were identical.
This made the closed-form solution more tractable and allowed
for the frequency nadir to be calculated directly. However, this
simplification only allows for a single speed response for all
PFR providers. In [4], a closed-form solution using a ramp
response was proposed that can be extended in a tractable way
for multiple speeds of response, but there are issues around
the accuracy of the solution (discussed in Section II.A below).

The contributions of this paper are threefold: i) introduc-
tion of a closed-form solution to a generic low-order SFR
model based on a PFR modelled as a lag response, ii)
development of an approximation for a lag response PFR

with two different speeds of response (or ramp rates), and
iii) presentation of novel example applications that use the
closed-form expressions derived herein. The inclusion of a
second speed of response is crucial in order to incorporate
the influence of fast frequency response (FFR) providers,
e.g. battery energy storage systems. This is desirable for the
design of new frequency control ancillary services markets
such as in the Wholesale Electricity Market (WEM) in Western
Australia, which is currently undergoing a reform process
and is explicitly including the speed of response in the new
frequency control markets [5].

The structure of the rest of this paper is as follows: Section
II derives the closed-form solutions to the SFR model. An
approximation for the SFR model with two speeds of response
is proposed in Section III, along with an assessment of the
accuracy of the approximation. Example applications for the
closed-form solutions are provided in Section IV and finally,
Section V offers some conclusions.

II. CLOSED-FORM SOLUTION FOR THE SFR MODEL

A closed form mathematical solution for the SFR model
can be derived given certain assumptions: i) PFR is modelled
as a continuous, differentiable and monotonically increasing
function of time, and ii) demand responses are not modelled as
discontinuous active power reductions triggered on the system
frequency.

With these assumptions, the linear ordinary differential
equation (ODE) for the SFR can be formulated as follows:

d∆f(t)

dt
=

fn
2KE

[p(t)− Pcont −DPload∆f(t)] (1)

where ∆f(t) is the change in frequency at time t (Hz), fn
is the nominal frequency (= 50 Hz), KE is the system
post-contingency kinetic energy (MW.s), p(t) is the primary
frequency response at time t (MW), Pcont is the generation
contingency size (MW), D is the load relief factor (% MW/Hz)
and Pload is the system load at the onset of the contingency
(MW).

Denoting D′ = DPload and H = KE
fn

, (1) can be rewritten
as follows:

d∆f(t)

dt
+
D′

2H
∆f(t) =

1

2H
[p(t)− Pcont] (2)

The general solution to this differential equation is:978-1-6654-3597-0/21/$31.00 c©2021 IEEE



∆f(t)e
D′
2H t =

1

2H

∫
[p(t)− Pcont] e

D′
2H tdt (3)

Note that while the formulation above is constructed for
under-frequency events, it is also valid for over-frequency
events with the contingency Pcont as a negative number and
the PFR function p(t) as a monotonically decreasing function
of time.

A. Linear Ramp Response

Consider a primary frequency response function of the form
p(t) = PFR

tr
t where PFR is is the maximum quantity of

PFR delivered (MW) and tr is the ramp time (s). Denoting
R = PFR

tr
, then the closed-form solution to (3) is as follows

[4]:

∆f(t) =
Rt

D′
−
(

2RH

D′2
+
Pcont
D′

)(
1− e−D′

2H t
)

(4)

The deficiency of this formulation is that it is only accurate
during the period of the ramp, i.e. t ≤ tr. The formulation
does not allow the ramp to stabilise and flatten out (since
the PFR equation p(t) is non-differentiable if the maximum
PFR quantity is applied as a hard limit after the ramp time is
over). Figure 1 shows a comparison of the closed form solution
against a numerically derived solution (with an integration step
size of 1 ms)1. It can be seen that the frequency nadir is only
accurately predicted when the nadir occurs before the ramp
time is finished, i.e. Figures 1a and 1b.

In any case, this formulation can be extended to have an
arbitrary number of response bands:

∆f(t) =
∑
i∈N

Rit

D′
−

[∑
i∈N

(
2RiH

D′2

)
+
Pcont
D′

](
1− e−D′

2H t
)

(5)
where N is the number of response bands and Ri = PFRi

tr,i
is

the ramp rate of the i-th band (in MW/s). However, it is clear
that the accuracy of this extended formulation is limited to the
response time of the fastest band. For applications that include
FFR bands, then this formulation would not be very accurate at
all (as can be seen in Figure 1c where the closed form solution
fails to predict the frequency nadir). This consideration is key
when integrating new technologies with very fast ramps, e.g.
inverter-interfaced systems such as batteries.

B. Lag Response

Consider a primary frequency response function of the form
p(t) = PFR(1 − e−t/τ ), where PFR is is the maximum
quantity of PFR delivered (MW) and τ is a time constant
governing the speed of response (s). Figure 2 graphically
depicts how the parameter τ affects the speed of response.

The closed-form solution to (3) for the lag response is:

1The parameters used in this example are Pcont = 300 MW, PFR = 270
MW, KE = 9, 000 MW.s, Pload = 2, 000 MW and D = 4% MW/Hz

(a) 6s ramp time (b) 3s ramp time (c) 1s ramp time

Fig. 1: Closed form vs numerical solutions - Linear ramp
response

Fig. 2: Comparison of lag PFR responses (PFR = 100 MW
with different values of τ )

∆f(t) =
PFR− Pcont

D′

(
1− e−D′

2H t
)

− PFR× τ
D′τ − 2H

(
e−t/τ − e−D′

2H t
) (6)

Unlike the linear ramp response, the lag response formu-
lation is accurate for the whole simulation time. Figure 3
shows a comparison of the closed form solution against a
numerically derived solution (with an integration step size of
1 ms), indicating practically perfect alignment between the
traces across the entire simulation time.

Fig. 3: Closed form vs numerical solution - Lag response

The time (in s) when the frequency nadir occurs can be
solved by taking the derivative of (6) and setting it to zero:

tnadir =
ln
[
1 + Pcont

PFR

(
D′τ
2H − 1

)]
D′

2H −
1
τ

(7)

The frequency deviation (in Hz) at the nadir can then be
calculated by inserting (7) into (6). Note that (7) can only be
solved if:

PFR > Pcont

(
1− D′τ

2H

)
(8)
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When this condition does not hold, then the shape of the
frequency response curve is asymptotic to the frequency nadir.
This is because faster PFR responses tend to interact in concert
with load relief effects resulting in a frequency that converges
asymptotically to the nadir (see Figure 6a as an example). In
such cases, the frequency nadir can be solved by taking the
limit of (6) as t→∞:

∆fnad = lim
t→∞

∆f(t) =
PFR− Pcont

D′
(9)

The maximum instantaneous rate of change of frequency
(RoCoF) occurs at t = 0:(

df

dt

)
max

= −Pcont
2H

(10)

C. Multiple Lag Response Bands

The closed form solution in (6) can be readily extended to
include an arbitrary number of response bands:

∆f(t) =

∑
i∈N PFRi − Pcont

D′

(
1− e−D′

2H t
)

−
∑
i∈N

PFRi × τi
D′τi − 2H

(
e−t/τi − e−D′

2H t
) (11)

Unlike in (7) for the lag response with only a single response
band, there is no analytical solution for the roots of the
derivative of (11). Therefore, it would be desirable to develop
an approximation for multiple response bands such that it
would still fit in the single response band formulation.

III. APPROXIMATION FOR TWO LAG RESPONSE BANDS

Consider the primary frequency response function com-
posed of two lag response bands:

p(t) = PFR1(1− e−t/τ1) + PFR2(1− e−t/τ2) (12)

We want to find an approximate function for the sum of two
exponentials in p(t) that is formulated as a single exponential
function, i.e. find equivalent parameters PFR and τ such that:

PFR(1− e−t/τ ) = PFR1(1− e−t/τ1) +PFR2(1− e−t/τ2)
(13)

A. Canonical example

To further constrain the solution space and make this
problem more tractable, let us consider a practical example and
assume for instance the speed of response parameters τ1 = 0.4
and τ2 = 2.0 (see Figure 2), corresponding to a fast (90% of
full response in 1s) and moderate-speed (90% of full response
in 5s) response respectively.

A non-linear least squares algorithm (trust region reflective
method [6]) was used to fit the sum of exponentials with
the equivalent approximation in (13) and find fitted values of
PFR and τ for a range of values of PFR1 and PFR2.

The results of the curve fitting exercise are shown in the pair
of 3D surface plots in Figure 4. It can be seen from Figure 4a

(a) PFR (b) τ

Fig. 4: Curve fitting results for parameters PFR and τ

that the parameter PFR can be approximated as a linear plane
and thus PFR ≈ PFR1 +PFR2. However, the parameter τ
is clearly a non-linear surface and needs further approximation.
A Levenberg-Marquardt (LM) curve fitting algorithm [7] was
used to fit the data in Figure 4b to a model equation of the
form:

τ = a

[
1− e−b

(
PFR2
PFR1

)]
+ τ1 (14)

The LM algorithm resulted in the coefficients a =
1.3141629 and b = 0.63075533. Using these coefficients in
the model equation (14) yields the surface plot in Figure 5,
which is fairly representative of the shape and values in Figure
4b.

Fig. 5: Approximate equation for τ as per PFR1 and PFR2

To summarise, in this canonical example we can represent
a PFR with two lag response bands with speed of response
parameters τ1 = 0.4 (fast) and τ1 = 2.0 (standard) as an
equivalent single lag response:

p̂(t) = PFR′(1− e−t/τ
′
) (15)

PFR′ = PFR1 + PFR2 (16)

τ ′ = 1.3141629

[
1− e−0.63075533

(
PFR2
PFR1

)]
+ 0.4 (17)

where PFR1 is the fast response (MW) and PFR2 is the
standard response (MW).
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B. Accuracy of the approximation

Figure 6 shows a series of comparisons between the exact
closed form solution with two lag response bands and the
approximate solution with a single equivalent response band,
for varying quantities of PFR1 and PFR2. The system
conditions for these plots are: Pcont = 300 MW, KE = 9, 000
MW.s, Pload = 2, 000 MW and D = 4% MW/Hz.

It can be seen from the plots that the approximation is exact
when only PFR1 is used, and has the highest errors when only
PFR2 is used.

(a) PFR1 = 210 MW,
PFR2 = 0 MW

(b) PFR1 = 130 MW,
PFR2 = 80 MW

(c) PFR1 = 50 MW,
PFR2 = 160 MW

(d) PFR1 = 0 MW, PFR2 =
210 MW

Fig. 6: Exact vs approximate closed form solutions

The accuracy of the approximation can be measured by
calculating the Mean Absolute Percentage Error (MAPE):

MAPE =
1

N

N∑
i=1

∣∣∣∣p(i)− p̂(i)p(i)

∣∣∣∣× 100 (18)

where p is the exact solution, p̂ is the approximate solution
and N is the number of samples.

The MAPE values for different values of PFR1 and PFR2

in the canonical example are plotted on a contour map in
Figure 7. The MAPE values confirm the earlier observations
from Figure 6, whereby the errors are minimised at higher
proportions of PFR1 relative to PFR2. The mean MAPE in
the contour map is 1.8%, while the maximum MAPE is 2.4%.

C. Validity of the approximation for other τ1 and τ2 values

Figure 8 shows contour maps of the mean and maximum
MAPE values for a range of speed of response parameters τ1
and τ2 that are different from the canonical example. It can be
seen that the errors increase when the ratio of τ2 to τ1 is large,
and converge to zero as the ratio draws closer to unity. The
mean MAPE and maximum MAPE across the range of τ1 and
τ2 values are 1.58% and 5.8% respectively. The generally low
error values (<5%) suggest that the proposed approximation
method is broadly valid across a range of τ1 and τ2 values.

Fig. 7: MAPE values for the canonical example with different
values of PFR1 and PFR2

Fig. 8: Mean and maximum MAPE values for different values
of τ1 and τ2

IV. EXAMPLE APPLICATIONS

A. Example 1: Maximum allowable contingency size

The frequency deviation (in Hz) at the nadir for the lag re-
sponse, calculated by inserting (7) into (6), can be formulated
as follows (refer to Appendix A for the proof):

∆fnad =
PFR

D′

[
(C +K − 1)B−C − CB−C/A −K + 1

]
(19)

where 1
K = PFR

Pcont
represents the ratio of the total PFR to the

contingency size, A = D′τ
2H , B = 1+K(A−1) and C = A

A−1 .
In jurisdictions such as the WEM, a minimum PFR con-

straint is imposed that is relative to the size of the largest
contingency, which can be expressed as follows:

PFR ≥ Pcont
K

(20)

For example, the minimum PFR in the WEM must be at
least 70% of the largest contingency [8]. Therefore in this
case, K is a constant, i.e. K = 1

0.7 = 1.429.
Given a maximum allowable frequency deviation ∆fmax,

the maximum contingency size allowed (while exactly meeting
the PFR constraint) can be calculated as follows:
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Pcont ≤
K ×D′∆fmax

(C +K − 1)B−C − CB−C/A −K + 1
(21)

Using this formulation on the canonical example of the two
lag response band approximation (described in Section III-A),
the maximum allowable contingency size can be calculated
directly for different values of τ , and then by extension,
the corresponding minimum proportion of FFR required to
maintain system security.

An example is shown in Figure 9, where the conditions are:
∆fmax = −1.25 Hz, KE = 7, 000 MW.s, Pload = 2, 500
MW and D = 4% MW/Hz. From this plot, it can be seen
that high contingency sizes require lower values of τ , and
correspondingly high proportions of FFR. For instance, a
maximum contingency size of 400 MW needs an aggregate
τ value of roughly 1.0, which in turn requires roughly 51%
of FFR in the total PFR mix.

Fig. 9: Maximum allowable contingency size for different
values of τ

An observation that can be made from (21) is that the
maximum allowable contingency size can be expressed as an
equation of A, K and D′:

Pcont ≤ f(A,K)D′ (22)

where

f(A,K) =
K ×∆fmax

(C +K − 1)B−C − CB−C/A −K + 1

Note that f(A,K) can only be solved if A ≥ 1 − 1
K . If

this inequality does not hold, then as noted earlier in Section
II-B, the shape of the frequency response curve is asymptotic
to the frequency nadir. In such cases, the maximum allowable
contingency can be determined by re-arranging (9):

Pcont ≤
∆fmax
1
K − 1

D′ (23)

If the maximum allowable contingency was expressed as
a multiple of D′ (which is a function of system load and

damping factor), then universally applicable metrics can be
obtained in terms of A and K (since A = D′τ

2H and K = Pcont

PFR
are expressed as ratios and not absolute values).

Fig. 10: Universally applicable maximum allowable contin-
gency in terms of the metrics A and K

This is shown as a 3D plot in Figure 10, which provides
fundamental insight into how the maximum allowable contin-
gency changes with respect to changes in the relative ratios
of τ to H and Pcont to PFR. As expected, the maximum
allowable contingency size increases when either A is reduced
(e.g. by increasing H or decreasing τ ) or K is reduced (e.g.
by increasing the amount of PFR relative to the contingency
size).

B. Example 2: Practical lower bound to τ

The inequality in (8) can be rearranged to be in terms of τ :

τ ≥
(

1− 1

K

)
2H

D′
(24)

It can be seen from (9) that when this inequality doesn’t
hold, the frequency nadir is asymptotic and independent of
τ . The implication of this is that reducing τ below the
threshold in (24) has no effect on the resulting frequency nadir.
Therefore, (24) sets a practical lower bound for τ at which
point no further performance benefits are seen (vis-a-vis the
frequency nadir) by increasing the aggregate speed of PFR
response.

C. Example 3: Relative trade-offs between contingency size,
PFR, system inertia and aggregate speed of response

Consider the special case where the PFR is equal to the
contingency size, i.e. K = 1. In this special case, the
expression for the maximum contingency size in (21) reduces
to:

Pcont = PFR ≤ −D
′∆fmax

A−
1

A−1

(25)
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Since A is defined as a function of H and τ , the sensitivity
of the contingency size Pcont to changes in system inertia and
aggregate speed of response can be calculated by finding the
following partial derivatives:

∂Pcont
∂τ

= −D
′∆fmax
τ

[
A− 1−A lnA

(A− 1)
2

]
A−

1
A−1 (26)

∂Pcont
∂H

=
D′∆fmax

H

[
A− 1−A lnA

(A− 1)
2

]
A−

1
A−1 (27)

Given the approximation for τ in (14) for a PFR with two
response bands, the sensitivity of τ to changes in PFR1 and
PFR2 are:

∂τ

∂PFR1
= −ab PFR2

(PFR1)2
e
−b

(
PFR2
PFR1

)
(28)

∂τ

∂PFR2
=

ab

PFR1
e
−b

(
PFR2
PFR1

)
(29)

∂Pcont

∂PFR1
and ∂Pcont

∂PFR2
can then be readily calculated using the

chain rule.
If marginal prices were known for the cost of changing the

contingency size by 1 MW, the aggregate speed of response
τ (or, by extension, the relative proportions of PFR1 and
PFR2) and if possible, the system inertia by 1 MW.s, then
the sensitivities could be applied to arrive at an optimal least
cost mix of parameters. Note that in its present form, such a
solution would not be co-optimised with energy dispatch or
other ancillary services.

The approach described above for analysing sensitivities
can also be generalised for all values of K by taking partial
derivatives of (21) with respect to K, i.e. ∂Pcont

∂K and then
using the chain rule to find ∂Pcont

∂PFR .

V. CONCLUSION

This paper presented a novel closed-form solution for a low-
order SFR model that is accurate for all time periods and
an approximation of the PFR that can support two different
speeds (e.g. a fast response and standard response) while still
maintaining mathematical tractability, i.e. there exist closed-
form expressions for the frequency nadir and RoCoF.

The proposed closed-form solutions are useful for practical
applications that will benefit from direct computation of the
frequency nadir or RoCoF (in lieu of numerical solutions),
while still taking into account the influence of fast frequency
responses. For example, existing security-constrained unit
commitment solutions considering frequency stability limits
(such as in [2]) can potentially be extended to include fast
frequency responses.

An avenue for future work is the consideration of PFR ac-
tivation delays in the formulation. The inclusion of activation
delays may be significant for very fast PFR responses (e.g.
batteries) where the activation delay may end up being of
greater duration than the PFR response time itself.

APPENDIX A
PROOF OF THE LAG RESPONSE FREQUENCY NADIR

The time when the frequency nadir occurs in (7) can be
expressed as follows:

tnadir =
τ lnB

A− 1
(30)

where K = Pcont

PFR , A = D′τ
2H and B = 1 +K(A− 1).

Inserting (30) into (6) and simplifying:

∆fnad =
PFR

D′

[
(C +K − 1)B−C − CB−C/A −K + 1

]
(31)

where C = D′τ
D′τ−2H = A

A−1 .
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